Threshold functions and bounded depth monotone circuits

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monotone circuits for monotone weighted threshold functions

Weighted threshold functions with positive weights are a natural generalization of unweighted threshold functions. These functions are clearly monotone. However, the naive way of computing them is adding the weights of the satisfied variables and checking if the sum is greater than the threshold; this algorithm is inherently non-monotone since addition is a non-monotone function. In this work w...

متن کامل

A Bounded Arithmetic Theory for Constant Depth Threshold Circuits

We deene an extension R 0 2 of the bounded arithmetic theory R 0 2 and show that the class of functions b 1-deenable in R 0 2 coincides with the computational complexity class TC 0 of functions computable by polynomial size, constant depth threshold circuits.

متن کامل

2 Monotone Functions and Monotone Circuits

In the last lecture we looked at lower bounds for constant-depth circuits, proving that PARITY cannot be computed by constant-depth circuits, i.e. PARITY / ∈ AC0. General circuit lower bounds for explicit functions are quite weak: the best we can prove after years of effort is that there is a function, which requires circuits of size 5n − o(n). In this lecture we will examine what happens if we...

متن کامل

Bounded-Depth, Polynomial-Size Circuits for Symmetric Functions

Let ~:= {f~,f2 . . . . } be a family of symmetric Boolean functions, where fn has n Boolean variables, for each n I> 1. L e t / ~ ( n ) be the minimum number of variables offn that each have to be set to constant values so that the resulting function is a constant function. We show that the growth rate o f / ~ ( n ) completely determines whether or not the family ~: is 'good', that is, can be r...

متن کامل

Communication in Bounded Depth Circuits

We show that rigidity of matrices can be used to prove lower bounds on depth 2 circuits and communication graphs. We prove a general nonlinear lower bound on a certain type of circuits and thus, in particular, we determine the asymptotic size of depth d superconcentrators for all depths 4 (for even depths 4 it has been determined before).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computer and System Sciences

سال: 1986

ISSN: 0022-0000

DOI: 10.1016/0022-0000(86)90027-9